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Abstract

Solutions to the classification tasks (OCR) from the subject Statistics, Monte Carlo Methods and Data
Processing - Master in Astrophysics, Particle Physics and Cosmology (Universitat de Barcelona).
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1 Introduction

1.1 Description

In order to provide a solution for the different tasks and facilitate future results validations, several automatic
processes has been implemented using the R language and Ruby. This document presents the results for each task
and its respective analysis.

Weka' has been used for attribute analysis and classification algorithms testing, while neural networks has been
designed with JavaNNS?.

Apart from this report, the following directories has been included:

1. “Original ARFF Statistical Analysis” Original input data and statistical results produced by the R script.

2. “Weka Experimenter”: Original input data + two reduced versions (PCA 95% and 75%) and experimenter
results.

3. “Convert + rescale ARFF to PAT Train + Test™: Original input data + two reduced versions (PCA 95% and
75%) and the 12 output files produced by the Ruby script:

(a) Train (70%) and test subdatasets (30%) for each input file (original, PCA95 and PCA70), using:

i. Binary representation of letters
ii. Numeric representation of letters

4. “JavaNNS results”™

(a) Input: Data converted in point 3 and initial neural networks.

(b) Output: Trained networks and data results.

5. “JavaNNS comparison™ Analysis of JavaNNS data results done by the Ruby script.

2 Letter Image Recognition Data (OCR)

2.1 Description of the sample

Disclaimer: Most of the information presented in this section has been obtained directly
from the paper “Letter Recognition Using Holland-Style Adaptive Classifiers” (see reference
section).

2.1.1 Context

The sample used in this study has been obtained from the paper “Letter Recognition Using Holland-Style Adaptive
Classifiers“, where the authors generated a set of 20,000 unique letter images by randomly distorting pixel images of
the 26 uppercase letters from 20 different commercial fonts. Concretely, this study will use a subset of 9.940 letters
from the original one.

Thttp://www.cs.waikato.ac.nz/ml/weka/
2http:/ /www.ra.cs.uni-tuebingen.de/software/JavaNNS /



2.1.2 Acquisition process

For the letters generation, the 20 different used fonts (Roman alphabet) represent five different stroke styles (simplex,
duplex, triplex, complex, and Gothic) and six different letter styles (block, script, italic, English, Italian, and
German). Each character were generated with random uniformly distributed parameter values for font type, letter
of the alphabet, linear magnification (from 1.0 to 1.6), aspect ratio (or horizontal magnification from 1.0 to 1.5),
and horizontal and vertical “warp” (stretching/shrinking a region). The resulting image for each character consisted
in a picture of 45 pixels high by 45 pixels wide, which was fairly recognizable by humans.

A AU AN 44 AA
BBl FBBO#D
G Ce YecccO
sFI'FF FFR
YK KRK KKK
SEISAYSINORES
Xe U X xXKar X

2.1.3 Objects

The features of each of the 9.940 characters (composed by 26 uppercase letters) are summarized in terms of a class
and 16 primitive numerical attributes:

1.
2.

10.
11.

12.

Uppercase letter that represents.

The horizontal position, counting pixels from the left edge of the image, of the center of the smallest rectangular
box that can be drawn with all "on" pixels inside the box.

The vertical position, counting pixels from the bottom, of the above box.

The width, in pixels, of the box.

. The height, in pixels, of the box.

The total number of "on" pixels in the character image.

The mean horizontal position of all "on" pixels relative to the center of the box and divided by the width of
the box. This feature has a negative value if the image is "left-heavy" as would be the case for the letter L.

The mean vertical position of all "on" pixels relative to the center of the box and divided by the height of the
box.

The mean squared value of the horizontal pixel distances as measured in 6 above. This attribute will have a
higher value for images whose pixels are more widely separated in the horizontal direction as would be the
case for the letters W or M.

The mean squared value of the vertical pixel distances as measured in 7 above.

The mean product of the horizontal and vertical distances for each "on" pixel as measured in 6 and 7 above.
This attribute has a positive value for diagonal lines that run from bottom left to top right and a negative
value for diagonal lines from top left to bottom right.

The mean value of the squared horizontal distance tunes the vertical distance for each "on" pixel. This
measures the correlation of the horizontal variance with the vertical position.



13.

14.

15.

16.

17.

The mean value of the squared vertical distance times the horizontal distance for each "on" pixel. This
measures the correlation of the vertical variance with the horizontal position.

The mean number of edges (an "on" pixel immediately to the right of either an "off pixel or the image
boundary) encountered when making systematic scans from left to right at all vertical positions within the
box. This measure distinguishes between letters like "W" or "M" and letters like "I" or "L."

The sum of the vertical positions of edges encountered as measured in 13 above. This feature will give a
higher value if there are more edges at the top of the box, as in the letter "Y."

The mean number of edges (an "on" pixel immediately above either an "off pixel or the image boundary)

encountered when making systematic scans of the image from bottom to top over all horizontal positions
within the box.

The sum of horizontal positions of edges encountered as measured in 15 above.

2.1.4 General characteristics

The subset sample is composed by 9.940 characters which represent 26 uppercase letters. They are in a ARFF file
format (Weka) with attributes stored in the same order they have been presented in the above section.

2.2

Statistical analysis

R is the perfect environment for data treatment and general statistics generation. A small R script has been created
for this purpose (code in section 7 on page 29) and the results are presented in this section.

2.2.1

Key indicators

A brief statistical analysis has been perform on the attributes of the 9.940 characters:

| Attribute | Mean | Variance | Std Deviation | Min | Max [ Median |

yegvx 7.78 2.56 1.60 1 15 1
y2bar 5.18 5.70 2.39 0 15 0
y.var.pix 7.52 5.46 2.34 0 15 0
y.ege 3.69 6.62 2.57 0 14 0
y.box 6.99 11.02 3.32 0 15 0
xybar 8.30 6.22 2.49 0 15 0
xy2br 7.93 4.32 2.08 0 15 0
xXegvy 8.34 2.39 1.55 0 15 0
x2ybr 6.49 6.91 2.63 0 15 0
x2bar 4.63 7.45 2.73 0 15 0
X.var.pix 6.88 4.10 2.02 0 15 0
x.ege 3.03 5.45 2.33 0 15 0
x.box 4.01 3.64 1.91 0 15 0
width.box | 5.11 4.05 2.01 0 15 0
npix 3.50 4.85 2.20 0 15 0
height.box | 5.35 5.14 2.27 0 15 0

2.2.2 Histograms
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2.3 Pretreatment

2.3.1 Principal Components Analysis: 95% of variance coverage

Using Weka, it is possible to perform a Principal Components Analysis that will allow us to reduce the dimensionality
of the problem by identification of linear correlation between attributes. With 95% of variance coverage, it is possible
to make a reduction from 16 attributes to 12:

1 === Run information —=—=

2

3 Evaluator: weka . attributeSelection .PrincipalComponents —R 0.95 —A 5

4 Search : weka.attributeSelection . Ranker —T —1.7976931348623157E308 —N —1

5 Relation : letter —recognition

6 Instances: 9940

7 Attributes: 17

8 class

9 x—box

10 y—box

11 width—box

12 heigth —box

13 npix

14 x—var—pix

15 y—var—pix

16 x2bar

17 y2bar

18 xybar

19 x2ybr

20 xy2br

21 x—ege

22 xegvy

23 y—ege

24 yegvx

25 Evaluation mode: evaluate on all training data

26

27

28

29 === Attribute Selection on all input data ===

30

31 Search Method:

32 Attribute ranking.

33

34 Attribute Evaluator (unsupervised):

35 Principal Components Attribute Transformer

36

37 Correlation matrix

38 1 0.76 0.85 0.68 0.62 —0.03 0.04 0.02 0.06 0.15 0.03 —0.05 0.48 0.08 0.28 —0.1
39 0.76 1 0.67 0.82 0.56 0.04 —0.04 —0.02 0.09 0.16 —0.05 —0.01 0.27 —0.01 0.24 —0.05
40 0.85 0.67 1 0.66 0.77 0.07 0.02 —0.1 0.06 0.12 0.01 —0.05 0.55 0.03 0.27 —0.11
41 0.68 0.82 0.66 1 0.65 0.03 —0.01 0.08 0.06 0.01 —0.01 0.02 0.27 0.02 0.3 —0.02
42 0.62 0.56 0.77 0.65 1 0.14 —0.03 —0.01 —0.06 —0.07 —0.08 —0.04 0.63 0 0.5 —0.06
43 —0.03 0.04 0.07 0.03 0.14 1 —0.35 —0.05 —0.13 0.08 —0.33 —0.03 0.16 —0.25 0.13 0.25
44 0.04 —0.04 0.02 —0.01 —0.03 —0.35 1 —0.13 —0.04 0.19 0.6 —0.28 —0.05 0.55 —0.08 —0.21
45 0.02 —0.02 —0.1 0.08 —0.01 —0.05 —0.13 1 —0.2 —0.32 0.04 0.08 0.15 —0.09 0 0.19
46 0.06 0.09 0.06 0.06 —0.06 —0.13 —0.04 —0.2 1 0.14 —0.06 0.12 —0.38 —0.04 0.28 —0.06
47 0.15 0.16 0.12 0.01 —0.07 0.08 0.19 —0.32 0.14 1 0.06 —0.1 —0.18 0.03 —0.09 —0.12
48 0.03 —0.05 0.01 —0.01 —0.08 —0.33 0.6 0.04 —0.06 0.06 1 0.06 0.04 0.52 —0.23 —0.24
49 —0.05 —0.01 —0.05 0.02 —0.04 —0.03 —0.28 0.08 0.12 —0.1 0.06 1 —0.01 —0.19 0.05 0.25
50 0.48 0.27 0.55 0.27 0.63 0.16 —0.05 0.15 —0.38 —0.18 0.04 —0.01 1 —0.02 0.12 —0.04
51 0.08 —0.01 0.03 0.02 0 —0.25 0.55 —0.09 —0.04 0.03 0.52 —0.19 —0.02 1 —0.06 —0.19
52 0.28 0.24 0.27 0.3 0.5 0.13 —0.08 0 0.28 —0.09 —0.23 0.05 0.12 —0.06 1 0.14
53 —0.1 —0.05 —0.11 —0.02 —0.06 0.25 —0.21 0.19 —0.06 —0.12 —0.24 0.25 —0.04 —0.19 0.14 1

54

55

56 eigenvalue proportion cumulative

57 4.31144 0.26946 0.26946 —0.436width—box —0.426x—box —0.417npix —0.4heigth —box —0.399y—box . ..
58 2.62272 0.16392 0.43338 —0.509y—var—pix —0.467x2ybr —0.453xegvy +0.324x—var—pix+0.314yegvx ...
59 1.7285 0.10803 0.54142 —0.556y2bar+0.452x2bar —0.433xybar4+0.43 x—ege+0.184x2ybr ...

60 1.35958 0.08497 0.62639 —0.497xy2br+0.421x—var—pix —0.383y2bar 40.322xybar —0.313x2bar ...
61 1.05434 0.0659 0.69229 0.613y—ege —0.445xy2br —0.371xybar —0.239y—box+0.232npix ...

62 0.97429 0.06089 0.75318 —0.636yegvx —0.435x—var—pix —0.281xegvy —0.278xybar —0.257y—var—pix ...
63 0.89406 0.05588 0.80906 —0.518xy2br+40.494x2bar —0.36x—ege +0.296yegvx+0.273y—box ...

64 0.62559 0.0391 0.84816 0.547x2bar+0.503xybar —0.304xegvy +0.293y—ege —0.239heigth —box ...
65 0.59126 0.03695 0.88511 —0.648x—var—pix 40.42 yegvx —0.294xegvy —0.253x2ybr+4+0.221y—var—pix ...
66 0.49325 0.03083 0.91594 —0.536y2bar+40.35Ty—ege +0.314heigth —box —0.303width—box —0.291yegvx ...
67 0.4304 0.0269 0.94284 0.633xegvy —0.414y—var—pix —0.338x2ybr+40.291xybar —0.205y2bar ...
68 0.26207 0.01638 0.95922 0.566npix —0.512x—box —0.332y—ege +0.27 heigth —box —0.236y—box ...
69

70 Eigenvectors

71 Vi A% V3 A V5 vé v7 V8 V9 V1o Vil vi2

72 —0.426 —0.0881 —0.0373 —0.0235 —0.1447 0.042 0.0723 0.0563 0.1042 —-0.2668 0.1816 —0.5116 x—box

73 —0.3987 —0.0243 —0.1375 —0.0605 —0.2388 0.0507 0.2728 —0.2255 —0.0924 0.1449 —-0.039 —0.236 y—box

74 —0.4361 —0.0588 —0.0328 0.064 —0.073 0.0142 —-0.1302 0.0138 0.0943 —-0.3033 —0.0409 0.0826 width—box

75 —0.4001 —-0.0171 —0.0455 —0.155 —0.1254 0.0333 0.2726 —0.2388 —0.1872 0.3144 —0.1778 0.2701 heigth—box

76 —0.4171 0.032 0.0999 0.0349 0.232 —0.0433 —0.1958 0.0428 0.0405 0.1449 —0.0535 0.5661 npix

77 —0.0572 0.3236 —0.0163 0.4211 0.0502 —0.435 0.0046 0.0614 —0.6479 —0.0668 —0.1938 —0.1222 x—var—pix

78 0.0197 —0.5094 0.0349 —-0.0177 0.1565 —0.2573 0.105 0.113 0.2206 0.1424 —-0.4137 —0.0305 y—var—pix

79 —0.0021 0.123 0.4517 —0.3125 —0.0738 0.1359 0.4942 0.5473 —0.2038 —0.0761 0.1235 0.1316 x2bar

80 —0.0101 0.003 —0.5557 —0.3833 0.1559 0.1109 —-0.0651 0.1656 —0.2011 —0.5362 —0.2051 0.1897 y2bar

81 —0.0263 —0.1553 —0.4327 0.3216 —0.3713 —0.278 0.1125 0.5031 0.1638 0.1328 0.2906 0.2188 xybar

82 0.0305 —0.4672 0.1843 —0.206 —0.1763 —0.2248 —0.1646 0.1699 —0.2528 —0.0126 —0.3382 —0.1604 x2ybr

83 0.0178 0.1897 0.0103 —0.4966 —0.4445 -—0.2315 —0.5175 0.0003 —0.0847 0.2275 0.1625 0.0067 =xy2br

84 —0.2883 0.0305 0.4295 0.1984 0.0181 —-0.0114 -—-0.3597 0.1944 0.1414 —0.2485 0.0026 —0.0037 x—ege

85 —0.0006 —0.4535 0.0968 —0.0795 0.2156 —0.2811 0.0588 —0.3043 —0.2937 —0.1846 0.6331 0.1501 xegvy

86 —0.2131 0.1542 —-0.1672 —0.2532 0.6126 —0.2017 —0.0576 0.2926 0.0627 0.3573 0.1619 —0.3325 y—ege

87 0.0339 0.3142 0.096 —0.2048 —0.0423 —0.6364 0.2958 —0.213 0.42 —0.2914 —0.105 0.0798 yegvx

88

89 Ranked attributes:

90 0.7305 1 —0.436width—box —0.426x—box —0.417npix —0.4heigth —box —0.399y—box ...

91 0.5666 2 —0.509y—var—pix —0.467x2ybr —0.453xegvy +0.324x—var—pix +0.314yegvx ...

92 0.4586 3 —0.556y2bar+0.452x2bar —0.433xybar+0.43 x—ege+0.184x2ybr ...

93 0.3736 4 —0.497xy2br+0.421x—var—pix —0.383y2bar +0.322xybar —0.313x2bar ...

94 0.3077 5 0.613y—ege —0.445xy2br —0.371xybar —0.239y—box+0.232npix ...

95 0.2468 6 —0.636yegvx —0.435x—var—pix —0.281xegvy —0.278xybar —0.257y—var—pix ...



96
97

99
100
101
102
103

© 00O WN

78
79

cocoocoo

Selected attributes: 1,2,3,4,5,6,7,8,9,10,11,12

A file has been generated named “OCR.PCA95.arft” with the transformed data. Consequently, data is represented
by 12 different variable, which correspond to a combination of the 16 original attributes that has been presented in

previous sections.

.1909 7 —0.518xy2br+0.494x2bar —0.36x—ege +0.296yegvx+0.273y—box ..
1518 8 0.547 x2bar+0.503xybar —0.304xegvy +0.293y—ege —0.239heigth —box ...
1149 9 —0.648x—var—pix+0.42 yegvx —0.294xegvy —0.253x2ybr+0.22ly—var—pix ...

.0841 10 —0.536y2bar+40.357Ty—ege +0.314heigth —box —0.303width—box —0.291yegvx ...
.0572 11 0.633xegvy —0.414y—var—pix —0.338x2ybr+4+0.291xybar —0.205y2bar . ..
.0408 12 0.566npix —0.512x—box —0.332y—ege +0.27 heigth —box —0.236y—box . ..

12

2.3.2 Principal Components Analysis: 70% of variance coverage

As exposed in the previous section, Weka can perform a Principal Components Analysis that will allow us to reduce
the dimensionality of the problem by identification of linear correlation between attributes. In this case a variance

coverage of 70% has been applied, reducing the number of attributes from 16 to 6:

=== Run information ===

Evaluator: weka . attributeSelection .PrincipalComponents —R 0.7 —A 5
Search : weka.attributeSelection . Ranker —T —1.7976931348623157E308 —N —1
Relation : letter —recognition —weka. filters .unsupervised.attribute . Reorder—R2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,1
Instances: 9940
Attributes : 17
x—box
y—box

width—box
heigth —box
npix
x—var—pix
y—var—pix
x2bar
y2bar
xybar
x2ybr
xy2br
x—ege
xegvy
y—ege
yegvx
class
Evaluation mode: evaluate on

all training dat

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (unsupervised):

Principal Components Attribute

Correlation matrix

1 0.76 0.85 0.68 0
0.76 1 0.67 0.82 0
0.85 0.67 1 0.66 0.
0.68 0.82 0.66 1 0
0.62 0.56 0.77 0.65 1
—0.03 0.04 0.07 0.03 0
0.04 —0.04 0.02 —0.01 —0.
0.02 —0.02 —0.1 0.08 —0.
0.06 0.09 0.06 0.06 —0.
0.15 0.16 0.12 0.01 —-0.
0.03 —0.05 0.01 —0.01 —0.
—0.05 —0.01 —0.05 0.02 —0.
0.48 0.27 0.55 0.27 0.
0.08 —0.01 0.03 0.02 0
0.28 0.24 0.27 0.3 0.
—0.1 —0.05 —0.11 —0.02 —0.
cigenvalue proportion
4.31144 0.26946
2.62272 0.16392
1.7285 0.10803
1.35958 0.08497
1.05434 0.0659
0.97429 0.06089
Eigenvectors
Vi V2 V3 V4
—0.426 —0.0881 —0.0373 —0.0235

—0.3987 —0.0243 —0.1375 —0.0605
—0.4361 —0.0588 —0.0328 0.064

—0.4001 —-0.0171 —0.0455 —0.155

—0.4171 0.032 0.0999 0.0349
—0.0572 0.3236 —0.0163 0.4211
0.0197 —0.5094 0.0349 —0.0177
—0.0021 0.123 0.4517 —0.3125
—0.0101 0.003 —0.5557 —0.3833
—0.0263 —0.1553 —0.4327 0.3216
0.0305 —0.4672 0.1843 —0.206

0.0178 0.1897 0.0103 —0.4966
—0.2883 0.0305 0.4295 0.1984
—0.0006 —0.4535 0.0968 —0.0795

.62 —0.03 0.04
.56 0.04 —0.04
77 0.07 0.02
.65 0.03 —0.01
0.14 —0.03
.14 1 —0.35
03 —0.35 1
01 —0.05 —0.13
06 —0.13 —0.04
o7 0.08 0.19
08 —0.33 0.6
04 —0.03 —0.28
63 0.16 —0.05
—0.25 0.55
5 0.13 —0.08
06 0.25 —0.21

cumulative
26946
43338
54142
62639
69229
75318

ocoooo00

V5 V6
—0.1447 0.042
—0.2388 0.0507
—0.073 0.0142
—0.1254 0.0333
0.232 —0.0433
0.0502 —0.435
0.1565 —0.2573
—0.0738 0.1359
0.1559 0.1109
—0.3713 —0.278
—0.1763 —0.2248
—0.4445 —0.2315
0.0181 —0.0114
0.2156 —0.2811

a

Transformer

0.02 0.06 0.15 0.03 —0.05 0.48 0.08 0.28 —0.1
—0.02 0.09 0.16 —0.05 —0.01 0.27 —0.01 0.24 —0.05
—0.1 0.06 0.12 0.01 —0.05 0.55 0.03 0.27 —0.11
0.08 0.06 0.01 —0.01 0.02 0.27 0.02 0.3 —0.02
—0.01 —0.06 —0.07 —0.08 —0.04 0.63 0 0.5 —0.06
—0.05 —0.13 0.08 —0.33 —0.03 0.16 —0.25 0.13 0.25
—0.13 —0.04 0.19 0.6 —0.28 —0.05 0.55 —0.08 —0.21
1 —0.2 —0.32 0.04 0.08 0.15 —0.09 0 0.19
—0.2 1 0.14 —0.06 0.12 —0.38 —0.04 0.28 —0.06
—0.32 0.14 1 0.06 —-0.1 —0.18 0.03 —0.09 —0.12
0.04 —0.06 0.06 1 0.06 0.04 0.52 —0.23 —0.24
0.08 0.12 —0.1 0.06 1 —0.01 —0.19 0.05 0.25
0.15 —0.38 —0.18 0.04 —0.01 1 —0.02 0.12 —0.04
—0.09 —0.04 0.03 0.52 —0.19 —0.02 1 —0.06 —0.19
0 0.28 —0.09 —0.23 0.05 0.12 —0.06 1 0.14
0.19 —0.06 —0.12 —0.24 0.25 —0.04 —0.19 0.14 1

—0.436width—box —0.426x—box —0.417npix —0.4heigth —box —0.399y—box . ..

—0.509y—var—pix —0.467x2ybr —0.453xegvy +0.324x—var—pix+0.314yegvx ...

—0.556y2bar+0.452x2bar —0.433xybar+0.43 x—ege+0.184x2ybr ..
—0.497xy2br+0.421x—var—pix —0.383y2bar +0.322xybar —0.313x2bar . .
0.613y—ege —0.445xy2br —0.371xybar —0.239y—box +0.232npix ...

—0.636yegvx —0.435x—var—pix —0.281xegvy —0.278xybar —0.257y—var—pix . ..

x—box
y—box
width—box
heigth —box
npix
x—var—pix
y—var—pix
x2bar
y2bar
xybar
x2ybr
xy2br
x—ege
xegvy



80
81

83
84
85
86
87

89
90
91

—0.2131
0.0339

0.1542 —0.1672 —0.2532 0.6126 —0.2017 y—ege
0.3142 0.096 —0.2048 —0.0423 —0.6364 yegvx

Ranked attributes:

0.731 1 —0.436width—box —0.426x—box —0.417npix —0.4heigth —box —0.399y—box . ..
0.567 2 —0.509y—var—pix —0.467x2ybr —0.453xegvy +0.324x—var—pix+0.314yegvx ...
0.459 3 —0.556y2bar+0.452x2bar —0.433xybar+0.43 x—ege+0.184x2ybr ...

0.374 4 —0.497xy2br+40.421x—var—pix —0.383y2bar +0.322xybar —0.313x2bar . ..
0.308 5 0.613y—ege —0.445xy2br —0.371xybar —0.239y—box+0.232npix ...

0.247 6 —0.636yegvx —0.435x—var—pix —0.281xegvy —0.278xybar —0.257y—var—pix ...
Selected attributes: 1,2,3,4,5,6 : 6

A file has been generated named “OCR.PCA70.arff” with the transformed data. Consequently, data is represented
by 6 different variable, which correspond to a combination of the 16 original attributes that has been presented in
previous sections.

3 Weka classification algorithms

Weka supports a great variety of supervised learning algorithms (classification) and they are classified in the following

categories (for each one, at least one algorithm has been selected for testing purposes):

3.

e Bayesian classifiers

— NaiveBayesSimple: Uses the normal distribution to model numeric attributes and the Bayes theorem for

probabilistic classification.

o Trees

— J48: Implements C4.5 algorithm for decision tree generation.

e Rules

— OneR: Finds the one attribute to use to classify considering which makes fewest prediction errors.

e Functions: classifiers that can be written down as mathematical equations in a reasonably natural way (al-
though NaiveBayes is an exception).

— SimpleLogistic: Linear regression for non-continuous classes (which is our case with 26 letters).

— MultilayerPerceptron: Neural network with hidden layers.

e Lazy classifiers

— IBk: Implementation of the K-Nearest Neighbours method (KNN).

e Miscellaneous category

1

— Hyperpipes: Identifies classes by using the attribute ranges of the training data.

Bayesian classifier: NaiveBayesSimple

The NaiveBayes uses the Bayes theorem establishing a priori probability that an object Z¢ belongs to a group G;:

It is worth to mention that numeric attributes are modeled by a normal distribution.

P (Gilm) =

P (7|Gi) - P (Gi)

SN P (T|Gi) - P (Gy)
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3.2 Tree: J48 (C4.5)

J48 implements C4.5 revision 8, an algorithm that generates decision trees that can be used for classification. It
uses the concept of information entropy (measure of disorder/unpredictability).

At each node of the tree, C4.5 chooses one attribute of the data that most effectively splits its set of samples into
subsets enriched in one class or the other. The algorithm is as follows:

Check for base cases such as:
All the samples in the list belong to the same class.
Create a leaf node for the decision tree saying to choose that class.

For each attribute a
Find the normalized information gain (difference in entropy) from splitting on a
Let a_best be the attribute with the highest normalized information gain
Create a decision node that splits on a_best
Recur on the sublists obtained by splitting on a_best, and add those nodes as children of node

# At the end

Pruning tree after creation:
Go back through the tree and attempts to remove branches that do not help
by replacing them with leaf nodes

For the case of study, the confidence threshold for pruning is one of the relevant parameters which will be set to
0.25 (general recommended value).

3.3 Rules: OneR

The one-attribute-rule, or OneR, is an algorithm for finding association rules. The algorithm is as follows:

For each attribute A:
For each value V of that attribute, create a rule:
1. count how often each class appears
2. find the most frequent class, ¢
3. make a rule "if A=V then C=c"
Calculate the error rate of this rule
Pick the attribute whose rules produce the lowest error rate

3.4 Functions
3.4.1 SimpleLogistic

SimpleLogistic builds logistic regression models for non-continuous classes (e.g. 26 letters). Mathematically, the
resulting model is:

1

- 1 +67w07w1a17“.7wnan

Pr(Cklay,az,...,;an) (2)
where Cy, is one possible class, (a1, ..., a,,) are the attributes of a new instance and (wy, ..., w, ) are the weights found
from the training data.

SimpleLogistic fits the regression models by using the LogitBoost algorithm?® with simple regression functions as
base learners and determining how many iterations to perform using cross-validation* (technique for estimating the
performance of a predictive model).

3.4.2 MultilayerPerceptron

MultilayerPerceptron is a neural network that trains using backpropagation (propagation of error for teaching of
artificial neurons). For the case of study, the “autoBuild” option will be set so hidden layers are added and connected
up automatically.

Shttp://en.wikipedia.org/wiki/LogitBoost
4http://en.wikipedia.org/wiki/Cross-validation (statistics)

11
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3.5 Lazy: IBk

IBk implements the K-Nearest Neighbours method (KNN). Given a sample of objects classified on N groups, every
new instance is classified by a majority vote of its neighbors, with the object being assigned to the class most
common amongst its k nearest neighbors.

Weka IBk implementation uses Euclidean distance and the number of nearest neighbors (default £ = 1) can be
specified. For the case of study k = 5 will be used, which has been determined as a good choice after various manual
tests.

3.6 Miscellaneous: Hyperpipes

For each class, a Hyperpipe is constructed that contains all points of that class (essentially records the attribute
limits observed for each category). Then, the new instances are classified according to the class that "most contains
the instance".

This is an extremely simple algorithm that has the advantage of being extremely fast and works quite well when
there are a huge amount of attributes.

3.7 Metalearning algorithms
3.7.1 Combining classifiers: Vote

Vote provides a method for combining classifiers by averaging their probability estimates (classification). The
algorithm is as follows:

# Model generation
Let n be the number of instances in the training data.
For each t classifier:

Apply learning algorithm.

Store the resulting model.

# Classification
For each of the t models:

Predict class of instance using model.
Return class that has been predicted most often.

For the case of study, the average probability given by the following algorithms will be considered for object
classification:

e NaiveBayesSimple: Probabilistic type
e J48: Decision tree type

e IBk: Geometric type

The classifiers has been chosen considering they are different enough as to complement each other efficiently.

3.7.2 Boosting: AdaBoost.M1

Generally, it is considered a good option to combine multiple models generated by a given classifier when these
models are significantly different from one another and each one treats a reasonable percentage of the data correctly.
In that sense, the boosting method can perform this combination by explicitly seeking models that complement one
another.

AdaBoost.M1 is a boosting algorithm designed specifically for classification and the algorithm is as follows:

# Model generation
Assign equal weight to each training instance.
For each of t iterations:
Apply learning algorithm to weighted dataset and store resulting model.
Compute error e of model on weighted dataset and store error.
If e equal to zero, or e greater or equal to 0.5:
Terminate model generation.

12
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For each instance in dataset:
If instance classified correctly by model:
Multiply weight of instance by e / (1 — e).
Normalize weight of all instances.

# Classification
Assign weight of zero to all classes.
For each of the t (or less) models:

Add —log(e / (1 — e)) to weight of class predicted by model.
Return class with highest weight.

It is worth to mention that in case any of the selected classifiers cannot handle weighted instances (e.g. C4.5
algorithm can accommodate weighted instances without modification but others don’t), AdaBoost.M1 resamples
the data with the weights before applying the classifier again.

For the case of study, the following classifiers will be used with AdaBoost.M1:

e NaiveBayesSimple: Probabilistic type
e J48: Decision tree type

e IBk: Geometric type

4 Weka experimenter

4.1 Input data

The following input files has been used with Weka experimenter, each of them has 9.940 objects:

e OCR.arff: Objects with the 16 original attributes presented in section 2 on page 3

e OCR.PCA95.arff: Objects with 12 attributes determined after applying a Principal Components Analysis
with 95% of covered variance, presented in section 2.3.1 on page 8.

e OCR.PCAT0.arff: Objects with 6 attributes determined after applying a Principal Components Analysis with
70% of covered variance, presented in section 2.3.2 on page 9.

Weka divides each dataset into K folds/subsamples for cross-validation. Of the K subsamples, a single subsample
is retained as the validation data for testing the model, and the remaining K — 1 subsamples are used as training
data. For the case of study, K = 10 has been established.

4.2 Classification algorithms

The selected algorithms for object classification are those presented in section 3 on page 10. Concrete list of
algorithm with parameters:

L)

bayes.NaiveBayesSimple
trees.J48 '—C 0.25 M 2’

rules.OneR '—B 6’

functions.SimpleLogistic —1 0 -M 500 —H 50 -W 0.0’
functions.MultilayerPerceptron '-L 0.3 -M 0.2 —N 500 -V 0 —S 0 -E 20 -H a’
lazy .IBk "-K 5 -W 0

—A "weka.core.neighboursearch.LinearNNSearch
—A "weka.core.EuclideanDistance —R first —last""’

L)

misc. HyperPipes

meta.Vote '—S 1
—B "bayes.NaiveBayesSimple
—B "trees.J48 —C 0.25 M 2"
—B "lazy.IBk -K 5 -W 0

"

13



21
22
23
24
25
26
27
28
29
30
31

—A "weka.core.neighboursearch.LinearNNSearch
—A "weka.core.EuclideanDistance —R first —last"""
—R AVG’

meta.AdaBoostM1 '—Q —P 100 —S 1 —I 10 -W bayes.NaiveBayesSimple’
meta.AdaBoostM1 '—P 100 —S 1 —I 10 -W trees.J48 — —C 0.25 -M 2°

meta.AdaBoostM1 '—P 100 —S 1 —I 10 -W lazy .IBk — -K 5 -W 0
—A "weka.core.neighboursearch.LinearNNSearch
—A "weka.core.EuclideanDistance —R first —last""’

In order to get statistically meaningful results, the number of repetitions of each algorithm has been established to
10. For the case of study, 100 calls will be done of one classifier with training data and tested against test data (10
folds/subsamples x 10 repetitions).

4.3 Results analysis

Weka includes an experiment analyzer (T-Test) that can be used to study the results of experiments. For the case
of study, the statistical significance has been established to 0.05 which refers to the result of a pair-wise comparison
of schemes using the corrected resampled T-Test. It is worth to mention that as the significance level is decreased,
the confidence in the conclusion increases.

Results from analysis of the percentage of correct classification per algorithm and dataset (standard deviation in
parenthesis):

Dataset (1) ’OCR original’ | (2)’OCR PCA 95’ (3)’OCR PCA 70’
meta . AdaBoostM1 (J48) (100)  93.04(0.86) 87.87(0.95) =  76.80(1.24) =*
lazy .IBk (100)  92.59(0.93) 91.94(0.79) »  78.95(1.16) =
meta . AdaBoostM1 (IBk) (100)  92.42(0.96) 91.85(0.82) 78.95(1.16) «
meta. Vote (100)  89.94(0.93) 85.67(0.93) =  74.34(1.28) =*
trees.J48 (100)  84.17(1.26) 73.97(1.44) =  67.66(1.42) =*
functions . MultilayerPerce (100) 81.46(1.22) 77.11(1.51) = 66.42(1.63) =
functions . SimpleLogistic (100) 77.24(1.02) 72.05(1.24) x 50.17(1.39) =
bayes.NaiveBayesSimple (100) 63.69(1.44) 64.65(1.34) v 48.48(1.51) =
meta.AdaBoostM1 (NBayes) (100) 63.63(1.42) 64.37(1.41) 48.33(1.56) =*
misc.HyperPipes (100)  24.60(1.28) 24.09(1.11) 17.98(0.87) =*
rules .OneR (100)  16.98(0.90) 16.92(1.06) 16.92(1.06)
(v/ /%) | (1/4/6) (0/1/10)

At the bottom of each column after the first column is a count (v/ /*) of the number of times that a scheme was
better than (v), the same as ( ), or worse than (*), the baseline dataset ("OCR. original’).

It is possible to conclude that applying PCA to the original dataset and reducing the number of attributes that
define an object, affects the efficiency (in terms of correct classification) of any of the selected classifiers and the
impact is not proportional for all of them.

On the other hand, despite that the execution of AdaBoost.M1 using J48 as classifier gets the better result for the
original data, IBk is getting the best results for all the datasets as we can see in the overall algorithm ranking;:

¢>’ Number of times the scheme was significantly more than the other schemes
‘<’ Number of times the scheme was significantly less than the other schemes

¢>-< Difference between the above numbers

>—< > < Resultset
26 26 0 meta.AdaBoostM1 (IBk)
26 26 0 lazy .IBk
20 24 4 meta.AdaBoostM1 (J48)

12 21 9 meta.Vote (NBayes+J48+IBk)
3 16 13 functions.MultilayerPerceptron
3 16 13 trees.J48
—6 12 18 functions.SimpleLogistic
—15 6 21 meta.AdaBoostM1 (NBayes)
6 21 bayes.NaiveBayesSimple
—24 3 27 misc.HyperPipes
0 30 rules.OneR
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Finally, the computational efficiency of each algorithm can be evaluated by the overall ranking of CPU time used
for training and testing (lower position is better performance):

# Training time

>—< > < Resultset

28 29 1 functions.SimpleLogistic

25 27 2 functions.MultilayerPerceptron
19 24 5 meta.AdaBoostM1 (IBk)

12 21 9 meta.AdaBoostM1 (J48)
2 16 14 meta.AdaBoostM1 (NaiveBayes)
1 15 14 trees.J48

—3 13 16 meta.Vote (NBayes+J48+IBk)

—12 9 21 rules.OneR

—18 6 24 bayes.NaiveBayesSimple
—27 0 27 misc.HyperPipes

—27 0 27 lazy .IBk

# Testing time
>—< > < Resultset
30 30 0 meta.AdaBoostM1 (IBk)
23 26 3 meta.Vote (NBayes+J48+IBk)
19 24 5 lazy .IBk
7 18 11 functions.SimpleLogistic
7 18 11 meta.AdaBoostM1 (NaiveBayes)
2 15 13 meta.AdaBoostM1 (J48)
—5 11 16 bayes.NaiveBayesSimple
—11 9 20 functions.MultilayerPerceptron
—24 0 24 misc.HyperPipes
—24 0 24 rules.OneR
—24 0 24 trees.J48

In order to have a better understanding of how much better/worst is each algorithm, here is the time expressed
in minutes of a single execution using one core of a CPU Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz. For
obtaining the total time consumed for this study, it should be multiplied by 100 (10 folds x 10 iterations):

# Testing time

Dataset (1) ’OCR original’ | (2) "OCR PCA 95° (3) 'OCR PCA 70°
meta . AdaBoostM1 (J48) (100) 5.62( 0.05) 14.83( 0.10) v 8.63( 0.05) v
lazy .IBk (100) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00)
meta. AdaBoostM1 (IBk) (100)  134.69(23.08) 106.44(22.37) =  53.60( 8.60) =
meta. Vote (100) 0.49( 0.01) 1.44( 0.02) v 0.82( 0.01) v
trees.J48 (100) 0.52( 0.02) 1.45( 0.03) v 0.85( 0.02) v
functions.MultilayerPerce (100) 147.14( 5.89) 122.71( 0.84) = 97.04( 0.75) x
functions.SimpleLogistic (100)  184.13(51.42) 191.67(58.11) 76.25(19.71) =
bayes.NaiveBayesSimple (100) 0.01( 0.01) 0.01( 0.00) 0.00( 0.01) =
meta.AdaBoostM1 (NBayes) (100) 2.78( 0.67) 2.28( 0.47) 0.14( 0.01) =
misc. HyperPipes (100) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00)
rules .OneR (100) 0.02( 0.01) 0.02( 0.01) 0.01( 0.00) =
(v/ /%) | (3/6/2) (3/2/6)

# Testing time

Dataset (1) OCR original |(2) OCR PCA 95 (3) OCR PCA 70
meta. AdaBoostM1 (IBk) (100)  0.04(0.01) 0.04(0.01) 0.04(0.01)
lazy .IBk (100)  1.22(0.02) 0.88(0.02) %  0.64(0.01) =
meta.AdaBoostM1 (NBayes) (100) 7.00(1.34) 5.61(1.32) =* 2.73(0.50) =
meta. Vote (100)  1.26(0.02) 0.91(0.02) %=  0.65(0.02) x
trees.J48 (100)  0.00(0.00) 0.00(0.01) 0.00(0.01)
functions.MultilayerPerce(100)  0.01(0.00) 0.01(0.00) 0.01(0.00)
functions.SimpleLogistic (100)  0.05(0.01) 0.06(0.01) v  0.03(0.01) =
bayes.NaiveBayesSimple (100) 0.04(0.01) 0.03(0.00) = 0.01(0.01) =
meta.AdaBoostM1 (J48) (100) 0.13(0.04) 0.11(0.03) 0.02(0.00) =
misc . HyperPipes (100)  0.00(0.00) 0.00(0.00) 0.00(0.00)
rules .OneR (100)  0.00(0.00) 0.00(0.00) 0.00(0.00)
v/ /%) | (1/6/4) (0/5/6)

IBk is the fastest algorithm in the training process but comparative slower for testing (classifying new objects). If
it is important to choose an algorithm with a fast testing process and good classification capacities, the boosted
version of J48 should be considered.

With respect to the metalearning algorithms, Vote has been used to combine the following classifiers:

e NaiveBayesSimple: Probabilistic type
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e J48: Decision tree type

e IBk: Geometric type

Percentage of correction and CPU time consumption for this Vote combination is worst that the offered by the best
individual classifier (IBk), therefore its not a good choice for this case of study.

On the other hand, despite that AdaBoost.M1 with NaiveBayesSimple and IBk does not present any improvement
at all, when applied to J48 the results are improved significantly (from 84.17% to 93.04% with the original dataset)
increasing the CPU time consumption.

5 Neural networks

5.1 Input data

A ruby script has been implemented (code in 8 on page 29) in order to transform the following input files (each of
them with 9.940 objects):

e OCR.arff: Objects with the 16 original attributes presented in section 2 on page 3

e OCR.PCA95.arff: Objects with 12 attributes determined after applying a Principal Components Analysis
with 95% of covered variance, presented in section 2.3.1 on page 8.

e OCR.PCAT0.arff: Objects with 6 attributes determined after applying a Principal Components Analysis with
70% of covered variance, presented in section 2.3.2 on page 9.

The transformations that the script performs are:

1. Finds the maximum and minimum value for each attribute

2. Rescales/normalizes the values between 0..1 for each attribute

value—minimum
maximum—minimum

new value =

3. Builds a binary representation of the letter (class). For example:

VKWLAXMBYNCZODPEQFRGSHT
000

UulJ
01 00000O0OO0OO0O0OO0OO0OO0OO0OO0OO0OO0OO0O 0

I
0 0

4. Defines a numeric representation between 0 and 1 with increments of 0.04 (1/25)

VKWLAXMBYNCZODPEQFRGSHTTIUIJ

5. Writes new files with the required JavaNNS/SNNS format

(a) Directories:

i. binary classes: output neuron (class/letter) represented in binary form
ii. numeric_ classes: output neuron (class/letter) represented in numeric form

(b) Files on each directory: OCR.pat, OCR.PCA95.pat and OCR.PCAT70.pat

6. For each of the above directory/files, generates subdatasets for training (70% of the original data) and vali-
dating (30%)

(a) Files on each directory:

i. OCR.Train.pat, OCR.Test.pat
ii. OCR.PCA95.Train.pat, OCR.PCA95.Test.pat
iii. OCR.PCAT70.Train.pat, OCR.PCA70.Test.pat
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7. Saves the conversion table of letters representation:

%« Conversion table: Class, numeric and binary values *
Class Num. VKWLAXMBYNCZODPEQFRGSHTTIU]J
v = 0.0 = 100000000O0OO0OO0OO0OO0OO0ODOOOOOOO0GO0O
K = 0.04 = 0100000000O0O0OOOOO0OOOOOO0OOO OO0
w = 0.08 = 0010000000O0OO0OO OO OOOOOOOOGO OO0
L = 0.12 = 0001000000O0O0OO OO OODOOOOOOGOOO0
A = 0.16 = 0000100000O0O0O0OO0OOO0ODOOOOOOGOOO0
X = 0.2 = 0000010000O0OO0OO OO OODOOOOOOGOOO0
M = 0.24 = 00000O010000O00OO0OOO0OOOOOOGOO0O0
B - 0.28 - 00000O001000O0O0OO0OOO0OOOOOOOGOO0O0
Y = 0.32 = 0000000DO0OT1TO0O0O0OOOOOOOOOOOGOO0O0
N = 0.36 = 0000000D0ODO10O00O0OO0OO0OOOOOO®OGO OO0
[¢] = 0.4 = 0000000DO0DO0OO?1O0O0O0OOOODOOOOOOGO OO
z = 0.44 = 0000000DO0ODO0OOOT110O00O0O0DOOOOOOGO OO
o = 0.48 = 00000O0O0DO0ODO0OOOOT1O0O0OO0ODOOOOOOGOO0O0
D = 0.52 = 00000O0O0DO0ODO0OOOO0OOTLOOOODOOO®OOOGOOO0
P = 0.56 = 000000O0DO0ODO0OOOO0OOO?11O0O0DOOOOOOGOO0O0
E = 0.6 = 00000O0O0DO0ODO0OOOOOOOTI1O0DOOOOO®OGOOO0
Q = 0.64 = 00000O0O0DO0ODO0OOOOOOOOILOOOOOOGOO0DO0
F = 0.68 = 00000O0O0DO0ODO0OOOOOOOOOT11O0O0OOOGOO0O0
R = 0.72 = 00000O0O0DO0ODO0OOOOOOOOOOT?1LO0OOOGOO0O0
G = 0.76 = 00000O0O0DO0ODO0OOOOOOOOO0OOOT110O0OGO OO
S = 0.8 = 00000O00DO0ODO0OOOOOOOOO0OOOOT1O0O0GO OO
H = 0.84 = 0000000DO0ODO0OOOOOOOOODOOOOTILOGOO0O0
T = 0.88 = 00000O0O0DO0ODO0OOOOOOOOO0OOOOOOT1LO0O0O0
1 = 0.92 = 00000O0O0DO0OO0OOOOOOOOOOOOOOOT1O00
U = 0.96 = 00000O0O0DO0ODO0OOOOOOOOOOOOOOOGOT1LO0
J = 1.0 = 00000O0O0DO0ODO0OOOOOOOOOOOOOOOGO OO0 1

5.2 General design decisions
5.2.1 Neuron
The chosen activation function is Logistic, which applies the following equation to the input value (x) generating a

smoothed step-function bound between 0 and 1 :

1
y =

= (3)
1 + ez Tinputs

0.9 \ m
0.8 \ B

07 | \ N
0.6 \ B

04 F \ 4

0.3 - \ i
0.2 \ i

o1l \ 1

On the other hand, Identity has been established as the output function (Identity (y) = Youtput). Therefore, each
neuron will output the value calculated by the equation above.

5.2.2 Patterns (data)

The data is divided into a training set (for estimating the weights) and a validation set (for estimating the optimal
number of hidden nodes). In section 5.1 on the previous page it has been already explained how this data has been
created.

The shuffle option will be activated, so JavaNNS will randomly shuffle the patterns before each cycle of backprop-
agation training. Thanks to that it is possible to reduce the probabilities for the network to oscillate constantly
between certain states by the use of equally ordered patterns for each training epoch.
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5.2.3 Layers
Each layer will be composed by the following number of neurons:
e Input layer (Njpput): 26, 12 and 6 attributes depending if the input data is original, PCA 95% or PCA 70%.

e Output layer (Noyiput): 26 or 1 depending if the letter is going to be represented in binary or numeric.

e Hidden layer (Npsqden): the number of neurons is recommended to be placed between the following range:

Ninput + Noutput
2

< Nhidden < Ninput + Noutput

— The initial strategy defined consist on choosing the largest number among input and output neurons
Nh,idden = mazr (Ninput7 Noutput)

5.2.4 Learning

Backpropagation is the chosen learning algorithms that iteratively will alter the value of the weights until some
error function is minimized, it will use a learning rate 7 = 0.2 and a maximum difference between the desired output
and the real output of d,,q = 0.1. Each iteration is called a cycle, and a minimum of 1.000 cycles will be done
for each test (limited by computational power and time). As update method “Topological Order” has been chosen
with one update step (sufficient to propagate information from input to output).

In this process, while the training error reduces monotonically, d,,q; will have an important role in order to avoid
overfitting because it establishes a limit for which error should not be propagated. Additionally, the validation
pattern helps to control this kind of problems.

On the other hand, the learning algorithm can get caught in a local minimum. To validate in simple way that this
is not apparently happening, several different weights initializations will be performed (random weights between -1
and 1).

5.2.5 Pruning

Networks can be pruned (neuron and connection elimination) in order to improve efficiency. For the cases where this
option is applied, it will be performed a Magnitude Based Pruning. This is the simplest weight pruning algorithm:
After each training, the link with the smallest weight is removed. It’s worth to mention that though this method
is very simple, it is known to rarely yield worse results than the more sophisticated algorithms.

5.3 Networks with binary representation of letters

5.3.1 Original

The following network has been designed and trained (it does not fit entirely in the image, it has 26 hidden neurons
and 26 output neurons):
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x-biox noMame W

During the training, the evolution of the mean square error was the following (red line for the test/validation
pattern):

= v
[ Error graph o @ B
Py
—]
= 2
1.5
b
- 1
k)
]
e
=1 o5
0 200 4860 600 200 1,000
L E Learning cycles = i
Step 100 MSE: 0.5734590240007755 validation : 0.2613144688443159
Step 200 MSE: 0.4994512566938087 validation : 0.23625497287108066
Step 300 MSE: 0.46331340910043595 validation : 0.22299200476295272
Step 400 MSE: 0.4400385057742287 validation : 0.2222846560155202
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Step 500 MSE: 0.4256005188029217 validation : 0.21828318953434148
Step 600 MSE: 0.41551739637040996 validation : 0.21884316969525486
Step 700 MSE: 0.40219335217031355 validation : 0.2136290030220385
Step 800 MSE: 0.3940331032418469 validation : 0.213942795772028
Step 900 MSE: 0.3885376058433937 validation : 0.21444517937704352
Step 1000 MSE: 0.3843637181159876 validation : 0.20900531362000127

5.3.2 PCA 95 %

The following network has been designed and trained (it does not fit entirely in the image, it has 26 hidden neurons
and 26 output neurons):

one nolarme

e
"*’1’_::‘::‘ noMarme

i o
g ’,:," nola
Ty

{ e —

T

y e T
et

o e
Tk T A
A

During the training, the evolution of the mean square error was the following (red line for the test/validation
pattern):

Error graph o'F M
=
= 2
1.5
»
- 1
[sk)
Il
—|c 0.5
o 200 400 s00 800 1,000
= Learning cycles = %
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Step 100 MSE: 0.7010856643768864 validation : 0.33005264251524774
Step 200 MSE: 0.5932119818520498 validation : 0.280224662591434
Step 300 MSE: 0.5524064389592765 validation : 0.2702997771786972
Step 400 MSE: 0.5250195427120011 validation : 0.2706575553581908
Step 500 MSE: 0.510730438948797 validation : 0.2771468491941231
Step 600 MSE: 0.4988691507770582 validation : 0.2713542812866784
Step 700 MSE: 0.48919501710785546 validation : 0.2662246059363996
Step 800 MSE: 0.48003352144114686 validation : 0.2618340045153735
Step 900 MSE: 0.47384391800018866 validation : 0.26418741943850604
Step 1000 MSE: 0.47207291601169515 validation : 0.2579010439590669

5.3.3 PCA 70 %

The following network has been designed and trained (it does not fit entirely in the image, it has 26 hidden neurons
and 26 output neurons):

noMarme
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During the training, the evolution of the mean square error was the following (red line for the test/validation
pattern):
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[ Error graph m T B
P
=
] 2
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¥
B 1
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i
=1 o5
o] 200 400 600 |00 1,000
. B Learning cycles = oy
Step 100 MSE:  1.1341376710785547 validation : 0.4836847009793134
Step 200 MSE:  1.0188979744351525 validation : 0.4454418978061075
Step 300 MSE:  0.9731453409643695 validation : 0.43454955809073187
Step 400 MSE:  0.9484801058957915 validation : 0.42444621341329225
Step 500 MSE:  0.9275684215972921 validation : 0.4142286580813003
Step 600 MSE:  0.9145770619812625 validation : 0.41391398521336353
Step 700 MSE:  0.9078236508897133 validation : 0.4181919315371395
Step 800 MSE:  0.899911431479502 validation : 0.4048590042861335
Step 900 MSE:  0.8893915249308351 validation : 0.40511759521975604
Step 1000 MSE: 0.8832434712441315 validation : 0.4077373583951626

5.4 Networks with numeric representation of letters
5.4.1 Original

The following network has been designed and trained:
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noMame Qutput.
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During the training, the evolution of the mean square error was the following (red line for the test/validation
pattern):

3
[ Error graph o @ B4
P
= 0.2
015
»
5 0.1
[:1}
I~
=
S VT
0 200 400 500 800 1,000
L E Learning cycles 4
Step 100 MSE: 0.07316514647782528 validation : 0.03274918881780265
Step 200 MSE: 0.06685264889303268 validation : 0.031110199404434418
Step 300 MSE: 0.061765377830131835 validation : 0.028840776900170555
Step 400 MSE:  0.058764636156784456 validation : 0.027238639867361723
Step 500 MSE:  0.05690404352547577 validation : 0.02738178695791284
Step 600 MSE:  0.05502045066623701 validation : 0.02680796540718923
Step 700 MSE:  0.05338100584300071 validation : 0.02661614318888592
Step 800 MSE:  0.051580739932760626 validation : 0.026547312336748355
Step 900 MSE:  0.05016698395942058 validation : 0.025508220526773925
Step 1000 MSE: 0.04939202475595762 validation : 0.025375765334192654
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5.4.2 PCA 95 %

The following network has been designed and trained:

noMame Cutput.
3.112
0.005 0.603
o -0.015
noNanle___________———"’
| ] -3.749
0.015
L 7.329
noMarme
L] 7,955
0.0z
i

noMarme .56
=

964
0.004
&

s
noMame 7478

s
5.625

W

0.01 ¥
-
459
noMarme
: s
F45
0.952

nolMame 3.13

0.002

nolMame

N

0
noMame

0.003
noMarme

0.14
noMare

0.002

.
noMarme

0.013

During the training, the evolution of the mean square error was the following (red line for the test/validation
pattern):

[ Error graph (]
-
=
=l o2
015
L4
B 0.1
[}
]
e
=1 005
o] 200 400 600 800 1,000
. B Learning cycles = ¥
Step 100 MSE: 0.09940173880195234 validation : 0.04502674207680982
Step 200 MSE: 0.09305192319280264 validation : 0.04236522446855613
Step 300 MSE: 0.08753950910868859 validation : 0.04031304782225253
Step 400 MSE: 0.08033461286108579 validation : 0.036873754121408135
Step 500 MSE: 0.07653567584707463 validation : 0.035841219701837325
Step 600 MSE:  0.07475118042237802 validation : 0.03562485396182433
Step 700 MSE: 0.07318759460244541 validation : 0.034924697108431844
Step 800 MSE:  0.07165655267870243 validation : 0.0348906718509298
Step 900 MSE:  0.07014810727155904 validation : 0.03390952710894272
Step 1000 MSE: 0.06980477428372317 validation : 0.03375271772234972
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5.4.3 PCA 70 %

In the design of every presented network, the initial strategy for establishing the number of neurons in the hidden
layer was determined by the maximum number:

Nhidden = max (Ninputv Noutput)

For this case, which is an easy to compute network in terms of CPU time consumption, three scenarios has been
created in order to evaluate the correctness of the strategy. Three networks has been defined using the recommended
bounds for the number of neurons in the hidden layer:

Ninput + Noutput
2

< Nhidden < Ninput + Noutput

Resulting in three networks with 7, 6 and 4 hidden neurons respectively.

Additionally, pruning (removes neurons and connections) has been applied to the 6 hidden neurons version in order
to evaluate this possibility.

7 neurons in the hidden layer The following network has been designed and trained:

one nolame Qutput.

] N

0.569 “0.84 0.311
=5.62 5.939

two NaV’

[ | 10.169 12.051

0.376 B.243 0.01a6 G428

three = noMame :
-2.6417 3

[ | : /2.915
0.411 0
7.502
-10.529
four oMarme
% /

[ | . el | 5
0.754 . o 0.311
-9.14 o

five ey oMame

[ 1.056 . \ =1 |
0.499 B5523 i 0.073

Six noMarnge

B 3-1.44;

0.43 4]
-9.43
[ |

noMNarne

0.212

During the training, the evolution of the mean square error was the following (red line for the test/validation
pattern):

[ Errer graph @ X
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a
1
=
=1 .05
0 200 400 600 800 1,000
G = Learning cycles = e
Step 100 MSE: 0.13660209343626864 validation : 0.0591191497127295
Step 200 MSE: 0.13051012168387932 validation : 0.05746487592547472
Step 300 MSE: 0.12306074197463426 validation : 0.05503580667763089
Step 400 MSE: 0.11800580501236586 validation : 0.05271678799194909
Step 500 MSE: 0.11717367396108422 validation : 0.05187454581820349
Step 600 MSE:  0.11655469519591508 validation : 0.05173947329812206
Step 700 MSE:  0.11599225889189302 validation : 0.052479913456978854
Step 800 MSE:  0.11596967260922304 validation : 0.05422891761375545
Step 900 MSE: 0.11561868975899668 validation : 0.05160117197324572
Step 1000 MSE: 0.11547352146734574 validation : 0.05138052845065183
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6 neurons in the hidden layer The following network has been designed and trained:

one noMame Cutput.

[ | | |
0.663 2051 / 0 o 26 0.3495
two ’ noNan:ne/_/ ’
B 7.833) sl 8.57

0.0LL - /6.444
B 8938, |

0.423 0.978

During the training, the evolution of the mean square error was the following (red line for the test/validation
pattern):

[ Error graph R4
e
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-~ 0.1
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e
=1 o.os
o] 200 400 600 800 1,000
L &= Learning cycles = ¥
Step 100 MSE:  0.13697006460966318 validation : 0.05985763007406417
Step 200 MSE:  0.1320928603030946 validation : 0.05799257827236859
Step 300 MSE:  0.1309209832563087 validation : 0.05837907797533901
Step 400 MSE:  0.1285985362042044 validation : 0.05727121415832233
Step 500 MSE:  0.12701329027223235 validation : 0.05551885838959539
Step 600 MSE:  0.12496408914096559 validation : 0.05474457974245211
Step 700 MSE:  0.12101870459410106 validation : 0.0519551738327098
Step 800 MSE:  0.12009227811530643 validation : 0.050503199249206175
Step 900 MSE:  0.11790827566309314 validation : 0.052013686325308624
Step 1000 MSE: 0.11635975930452506 validation : 0.051971885839778256

4 neurons in the hidden layer The following network has been designed and trained:

one noMlarme Cutput.
1.07 5.541
0.378 [ 0.446
--3.386; 5.221
two

noNarle___/——’
]

-0.453 -3.747

0.394 0.999
~.867 -9.173
three noMame :

-3.935
0.312 0.132
4.045
four - noNanle
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) 10.098
five
1.588
0.427
Six
0.472
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During the training, the evolution of the mean square error was the following (red line for the test/validation
pattern):
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[ Error graph o@ M
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I
<ie
=1 .05
o] 200 400 600 800 1,000
L E Learning cycles = ¢
Step 100 MSE: 0.13853663362007984 validation : 0.06079521153614395
Step 200 MSE: 0.13670098389818075 validation : 0.06086290898057616
Step 300 MSE: 0.13641086222740087 validation : 0.05985930332155694
Step 400 MSE: 0.13615051105788376 validation : 0.060952246069188566
Step 500 MSE: 0.13564532335615254 validation : 0.05955790897730131
Step 600 MSE: 0.13592388068646252 validation : 0.06071935764980508
Step 700 MSE: 0.1340311588115935 validation : 0.06359274318600404
Step 800 MSE: 0.1345701423344756 validation : 0.05917250129320102
Step 900 MSE: 0.13402450428482351 validation : 0.059513161120040556
Step 1000 MSE: 0.133923907639417233 validation : 0.05920344147403955

Pruning Additionally, in this case the network version with 6 hidden neurons has been pruned searching for
efficiency improvements:

ong Cutput.
H- |
o.?sm 0.489
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twao noNanle/—/'
0.563 0.012
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three
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The evolution of the mean square error for the pruned network (blue is the pruned version, black is the 6 hidden
neuron version and red is the verification pattern):

[ Error graph o' M
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™ 0
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5 = Learning cycles =
Step 100 MSE: 0.14501143621167106 validation : 0.06109176011472481
Step 200 MSE: 0.13774829355363954 validation : 0.06098788061212326
Step 300 MSE: 0.13703827375057637 validation : 0.06007159595758143
Step 400 MSE: 0.13710864225063926 validation : 0.060927080836254505
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Step 500 MSE: 0.13628441179302378 validation : 0.060561340659516995
Step 600 MSE: 0.13617224792439533 validation : 0.060528198078444624
Step 700 MSE: 0.13630848199548856 validation : 0.060994931789631016
Step 800 MSE: 0.13587077682566756 validation : 0.06170215261294328
Step 900 MSE: 0.1356409637021347 validation : 0.059108311981262575
Step 1000 MSE: 0.13570556026589223 validation : 0.05914588073689533

5.5 CPU time consumption

JavaNNS does not allow to perform a exhaustive calculation of the CPU time consumption, but none of the learning
process (1.000 cycles) has last more than 5 minutes using one core of a CPU Intel(R) Core(TM)2 Duo CPU E8400
@ 3.00GHz. Simpler networks have performed significantly faster, the learning of the simplest one (PCA 70% and
network with 4 neurons in the hidden layer) lasted less than 1 minute.

5.6 Results analysis

5.6.1 Data improvements and network design

Comparing the 3 analyzed datasets with the networks that use the binary representation, it has been demonstrated
that reducing the number of original attributes by applying Principal Components Analysis has lead to worst
classification results by the neural networks:

# Step 1000 in binary representation networks

Original — MSE: 0.3843637181159876 validation : 0.20900531362000127
PCA 95% — MSE: 0.47207291601169515 validation : 0.2579010439590669
PCA 70% — MSE: 0.8832434712441315 validation : 0.4077373583951626

In that sense, the same happens for networks with numeric representation of letters:

# Step 1000 in numeric representation networks

Original — MSE: 0.04939202475595762 validation : 0.025375765334192654
PCA 95% — MSE: 0.06980477428372317 validation : 0.03375271772234972
PCA 70% — MSE: 0.11635975930452506 validation : 0.051971885839778256

In the case of the network with numeric representation and dataset PCA 70 %, extra analysis has been performed
as described in section 5.4.3 on page 24. They show that between the 7, 6 and 4 hidden neurons versions the second
one is a perfectly good choice. Although the 7 version reaches a lower mean square error in Step 1.000, it is not a
huge difference compared to the computational time that supposes adding a neuron.

# Step 1000 in numeric representation networks with PCA 70%

7 Hidden neurons — MSE: 0.11547352146734574 validation : 0.05138052845065183
6 Hidden neurons — MSE: 0.11635975930452506 validation : 0.051971885839778256
4 Hidden neurons — MSE: 0.13392397639417233 validation : 0.05920344147403955

Therefore, for this case of study, it seems a good design strategy to choose the maximum Np;ggen, = max (Ninput, Noutput)
as the number of neurons for the hidden layer.

On the other hand, from the 6 hidden neuron version, the pruning process has generated a 4 hidden neurons
scenario with some less connections. The error evolution is quite similar to the 4 hidden neurons version with all
the connections:

# Step 1000 in numeric representation networks with PCA 70%
4 Hidden neurons — MSE: 0.13392397639417233 validation : 0.05920344147403955
Pruned version — MSE: 0.13570556026589223 validation : 0.05914588073689533

It is a computational improvement that could be interesting if the increase in the error margin is not a big problem.

5.6.2 Binary vs numeric representation

A ruby script (check section 9 on page 31) has been develop to analyze the best classification results for the JavaNNS
networks with binary and numeric representations, which correspond to the original dataset (16 attributes).

For the network with binary representation of letters, the script performs the following steps:

1. For each binary value (26) of each object, consider correct classification by default and treat the following
cases:

(a) Desired output is one
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i. Consider incorrect if the real output equal or less than “1 - margin error”
(b) Desired output is zero

i. Consider incorrect if the real output more than “0 + margin error”

2. Calculate total (in)correct classification and percentages

26-total objects
E =0 [ouputyear —outputiesired|

3. Calculate mean error e = 56-fofal objects

Margin error has been established to 0.5, therefore any number greater or equal to 0.5 is considered a 1, otherwise
it is interpreted as a 0. These are the analysis results:

Correct classifications: 5880 (84.51%)
Incorrect classifications: 1078 (15.49%)
Mean error: 0.01

On the other hand, for the network with numeric representation of letters, the script performs the following steps:
1. For each object:
(a) Consider correct classification if:
ouputdesired — MArgin error < outputyeqr < ouputdesired + margin error
(b) Otherwise, consider incorrectly classified

2. Calculate total (in)correct classification and percentages

total objects
E [ouput eal —outputicsired|

i=0
total objects

3. Calculate mean error e =

The separation between consecutive letters is 0.04 in the numeric representation, therefore a margin error of 0.02
has been established. These are the analysis results:

Correct classifications: 915 (13.15%)
Incorrect classifications: 6043 (86.85%)
Mean error: 0.11

It is clear that the design presented in this study for numeric representation of letters does not help to produce
good classification results when working with neural networks, although they are much more efficient in term of
CPU time than binary ones.

6 Conclusions

In general the K-Nearest Neighbours method (Weka IBk), as a geometric classifier type, seems to be the better
choice for letter classification. It has obtained the best percentage of correct classification for almost every used
dataset (92.59% for original, 91.94% for PCA95 and 78.95% for PCAT70).

On the other hand, comparing neural networks, it has been possible to design a network that correctly classifies
letters in the 84.51% of the cases with JavaNNS, while the Weka MultilayerPerceptron (with autoBuild activated)
reached 81.46%. Therefore results are very aligned for this type of algorithms with independence of the implemen-
tation.

Finally, it is worth to mention how the percentage of correct classification has decreased (especially in the 70% of
covered variance case) for those datasets where Principal Components Analysis has been performed. Although this
method helps in simplifying the problem, it is important to check the reduction in the classification capacities of
the algorithms. For example, in the case of K-Nearest Neighbours method and PCA 95%, the reduction was small
(from 92.59% to 91.94%) but for PCA 70% the percentage fell significantly (from 92.59% to 78.95%).
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7 Annex I. R script for statistical analysis

library (rkward)
library (GDD)

# Read input file

ocr.data <<— read.table (file="input/OCR.arff", header—FALSE, sep=',’, quote='"’, dec=’.', fill=FALSE, comment.char="#",
col.names = c("class", "x—box", "y—box", "width—box", "heigth—box", "npix", "x—var—pix", "y—var—pix", "x2bar", "y2bar
", "xybar", "x2ybr", "xy2br", "x—ege", "xegvy", "y—ege", "yegvx"), na.strings = "NA", nrows = —1, skip = 59, check.

names = TRUE, strip.white = FALSE, blank.lines.skip = TRUE)

Select variable to be analized

vars <— list (substitute (ocr.data[["yegvx"]]), substitute (ocr.data[["y2bar"]]), substitute (ocr.data[["y.var.pix"]]),
substitute (ocr.data[["y.ege"]]), substitute (oecr.data[["y.box"]]), substitute (ocr.data[["xybar"]]), substitute (ocr
~data[["xy2br"]]), substitute (ocr.data[["xegvy"]]), substitute (ocr.data[["x2ybr"]]), substitute (ocr.data[["x2bar"
11) , substitute (ocr.data[["x.var.pix"]]), substitute (ocr.data[["x.ege"]]), substitute (ocr.data[["x.box"]]),
substitute (ocr.data[["width.box"]]), substitute (ocr.data[["npix"]]), substitute (ocr.data[["heigth.box"]]))

# Prepare result vector
results <— data.frame (’Variable Name’'=rep (NA, length (vars)), check.names=FALSE)

for (i in 1l:length (vars))

var <— eval (vars[[i]], envir=globalenv ());
results[i, 'Variable Name’] <— rk.get.description (vars[[i]], is.substitute=TRUE)
# Stats
results[i, 'Number of obs’] <— length(var)
results[i, 'Number of missing values’'] <— sum(is.na(var))
results[i, 'Mean’'] <— mean(var,na.rm=TRUE)
results[i, ’'Variance’'] <— var(var,na.rm=TRUE)
results[i, 'Sd’] <— sd(var,na.rm=TRUE)
results[i, ’'Minimum’] <— min(var,na.rm=TRUE)
results [i, ’'Maximum’] <— max(var,na.rm=TRUE)
if (length (var) >= 1)
results[i, ’'Minimum values’] <— paste (sort(var, decreasing=FALSE, na.last=TRUE)[1:1], collapse=" ")
H
if (length (var) >= 1)
results[i, ’'Maximum values’] <— paste (sort(var, decreasing=TRUE, na.last=TRUE)[1:1], collapse=" ")
H
results[i, 'Median’'] <— median(var,na.rm=TRUE)
results[i, 'Inter Quartile Range’'] <— IQR(var,na.rm=TRUE)
temp <— quantile (var,na.rm=TRUE)
results[i, 'Quartiles’] <— paste (names (temp), temp, sep=": ", collapse=" ")
# Histograms
filename <— paste(i, results[i, 'Variable Name’'], sep=".")
plotname <— results[i, ’Variable Name’]
GDD( file=paste ("output/Histogram.", filename, sep=""), type="png", w=800, h=600)
hist (var, probability=TRUE, breaks=15, main=paste ("Histogram for'", plotname), xlab="Value')
rug(var)
dev.off ()
}
# Save stats
write.table (results , file = "output/OCR-stats.csv", sep = ",", row.names = FALSE)

8 Annex II. Ruby script for ARFF transformation into PAT

usr/bin/ruby

files = ["OCR","OCR.PCA95" ,"OCR.PCAT0"]

alphabet = {"A",0,"B" ,0,"C",0,"D",0,"E" ,0,"F",0,"G" ,0,"H" ,0,"1",0,"J",0,"K" ,0

ngn 0 (LYl 0 "N ’O ‘Ylovl ,0 ’YIPH ’0 ’HQVI ’O ‘YIRYI ,0 ’vlsvl ’0 ’HTVI ’0 ‘”[,T” ,0 ’vlvvl ‘0 ’”VV” ’0 ,"X” ’0 ’!IYYI 0 ngn 0}

files .each { |[f]

infile = File.new("input/" + f + ".arff", "z")
outfilebin = File.new("output/binary _class/" + f + ".pat", "w")
outfilebin_train = File.new("output/binary_class/" + f +4 ".Train.pat",
outfilebin_test = File.new("output/binary class/" + f + ".Test.pat",
outfile = File.new("output/numeric class/" 4+ f 4+ ".pat", "w")
outfile train = File.new("output/numeric_class/" 4+ f 4 ".Train.pat",
outfile test = File.new("output/numeric_class/" 4+ f 4 ".Test.pat", "w'")
# Find min and max for each input parameter
process = false
total = O
min = []
max = []
infile .each { |i]
if (process) then
v = i.split(",")
for j in 0..(v.length — 1 — 1) # Do not process class (last column)
if max[j].nil? or max[j] < v[j].to f then
max[j] = v[j]-to f -
end -
if min[j].nil? or min[j] > v[j].to_f then
min[j] = v[j].to_f
end
end
total = total 4+ 1
end
if (i[0,5] == "@data") then
process = true
end
H
#puts "max: " + max.join (" ")
#puts "min: " + min.join (" ")
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43 infile .close

44 infile = File.new("input/" + £ + ".arff", "z")

45

46 # Headers

47 outfile.write ("SNNS pattern definition file V3.2\n")

48 outfile.write("generated at Mon Jan 10 15:58:23 2010\n\n\n")

49 outfile . write("No. of patterns " 4+ total.to_s + "\n")

50 outfile.write("No. of input units " 4+ max.length.to_s 4+ "\n")

51 outfile.write("No. of output units "4 "1t 4 "\n\n")

52 outfile _train.write("SNNS pattern definition file V3.2\n")

53 outfile train.write("generated at Mon Jan 10 15:58:23 2010\n\n\n")

54 outfile _train.write("No. of patterns " + (total % 0.70).round.to_s + "\n")

55 outfile train.write("No. of input units " + max.length.to_s + "\n")

56 outfile train.write("No. of output units "4 "1 4 "\n\n")

57 outfile test.write("SNNS pattern definition file V3.2\n")

58 outfile test.write("generated at Mon Jan 10 15:58:23 2010\n\n\n")

59 outfile test.write("No. of patterns " 4+ (total — (total % 0.70).round).to_s + "\n")
60 outfile test.write("No. of input units " 4+ max.length.to_ s + "\n") -
61 outfile test.write("No. of output units "4 "1" 4 "\n\n")

62 outfilebin.write("SNNS pattern definition file V3.2\n")

63 outfilebin.write("generated at Mon Jan 10 15:58:23 2010\n\n\n")

64 outfilebin.write("No. of patterns " + total.to_s + "\n")

65 outfilebin.write("No. of input units " + max.length.to_s + "\n")

66 outfilebin.write("No. of output units "4 "26" 4+ "\n\n")

67 outfilebin train.write("SNNS pattern definition file V3.2\n")

68 outfilebin train.write('"generated at Mon Jan 10 15:58:23 2010\n\n\n")

69 outfilebin train.write("No. of patterns " 4+ (total % 0.70).round.to_s 4+ "\n")
70 outfilebin train.write("No. of input units " 4 max.length.to s + "\n")

71 outfilebin train.write("No. of output units "4 "26" 4+ "\n\n™)

72 outfilebin test.write("SNNS pattern definition file V3.2\n")

73 outfilebin_test.write("generated at Mon Jan 10 15:58:23 2010\n\n\n")

74 outfilebin_test.write("No. of patterns " 4+ (total — (total = 0.70).round).to_s + "\n")
75 outfilebin_test.write("No. of input units " + max.length.to_s + "\n")

76 outfilebin_test.write("No. of output units "4 126" 4+ "\n\n")

77

78

79 process = false

80 count = 0

81 infile .each { |i]

82 if (process) then

83 v = i.split(",")

84 # Rescale/Normalize between 0..1

85 for j in 0..(v.length — 1 — 1) # Do not process class (last column)

86 if (max[j].to_f — min[j].to_f) != 0 then

87 v[ijl = (vTil.-to_f — minTj].to_f) / (max[j].to_f — min[j].to_f)
88 end

89 end

90

91 letter = v.pop # Extract and remove from vector the class (last column)
92 # Binary array with order: VKWL AXMBYNCZODPEQFRGSHTTIUJ
93 alphabet [letter [0,1]] = 1

94 # Numerical value:

95 value =

96 for j in 0..26

97 if alphabet.keys[j] == letter [0,1] then

98 # Order: VKWLAXMBYNCZODPEQFRGSHTTIU]J

99 # 0 e 1
100 # with increments of 0.04

101 value = j.to f / 25 # From 0..25

102 break -

103 end

104 end

105

106 outfilebin.write v.join(" ") + " " 4+ alphabet.values.join (" ") + "\n"
107 outfile.write v.join(" ") + " " + value.to_s + "\n"

108 if count < (total % 0.70).round then

109 outfilebin_train.write v.join(" ") + " " + alphabet.values.join(" ") + "\n"
110 outfile train.write v.join(" ") + " " 4 value.to_s + "\n"

111 else - -

112 outfilebin_ test.write v.join(" ") 4+ " " 4 alphabet.values.join(" ") + "\n"
113 outfile test.write v.join(" ") + " " 4 value.to_s + "\n"

114 end - -

115

116 alphabet[letter [0,1]] = O

117 count = count + 1

118 end

119 if (i[0,5] == "@data") then

120 process = true

121 end

122 3}

123

124 infile .close

125 outfilebin.close

126 outfilebin _train.close

127 outfilebin_test.close

128 outfile.close

129 outfile _train.close

130 outfile _test.close

131

132

133

184 # Print conversion table

135 # VKWLAXMBYNCZODPEQFRGSHTTIU]J

136 # 0 1

137 outfiletable = File.new("output/conversion_table.tx", "w")

138  outfiletable.write " \n"
139 outfiletable.write "+ Conversion table: Class, numeric and binary values *\n"
140 outfiletable.write " \n"
141 outfiletable.write "Class\t\tNum.\t\t" + alphabet.keys.join(" ") + "\n"

142 outfiletable.write " \n"
143  count = 0.0

144 i =0

145 while i < 26

146 alphabet [alphabet .keys[i]] = 1

147 outfiletable .write alphabet.keys[i] + "\t=\t" + count.to_s + "\t=\t" + alphabet.values.join (" "\n"
148 alphabet[alphabet.keys[i]] = O -

149 count = count + 0.04

150 i=i + 1
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152
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end

outfiletable . write "

9 Annex III. Ruby script for JavaNNS results analysis

usr/bin/ruby

infile = File.new("input/Binary — OCR Original.res",
margin_error = 0.5
total corrects = 0
total _incorrects = 0
data_start = false
data_line = 0
error = 0
desired _output = ""
real_output =
infile.each { |i]
# Begin data entry
if i[0,1] == "#" then
data_start = true
data_line = 0

desired output = ""

real_output = ""
end

# Process data entry
if data_start then

# Build string with desired output
if data line >= 3 and data line <= 5 then

desired output = desired output + i[0,i.length —1] + " " # Skip \n
end

# Build string with real output
if data line >= 6 and data line <= 8 then

real_output = real_output + i[0,i.length —1] + " " # Skip \n
end
# End of data entry => Check if it correctly classfied
if data_line == 8 then
desired output = desired output.split " "
real output = real output.split " "
correct = true # Suppose correct by default
for i in 0..desired output.length—1
if desired output[i] == "1" then
if real_output[i].to_f <= 1 — margin_error then
correct = false
end
else
if real_output[i].to_f > 0 + margin_error then
correct = false
end
end
error = error + (real output[i].to f — desired output[i].to f).abs
end - - - -
if correct then
total _corrects = total_corrects + 1
else
total _incorrects = total_incorrects + 1
end
data_start = false
end -
data line = data line + 1
end - -
}
puts " "
puts "% Network with binary representation of letters e
puts " "
correct _percent = 100 % total_corrects.to_f / (total_corrects 4+ total_incorrects)
correct _percent = (100 % correct_percent).round.to_f / 100
puts "Correct classifications:\t" 4+ total corrects.to s 4+ " (" 4+ correct percent.to s + "%)"
incorrect percent 100 % total incorrects.to f / (total corrects + total incorrects)
incorrect percent = (100 % incorrect percent).round.to f / 100 -
puts "Incorrect classifications:\t" | total incorrects.to s + " (" + incorrect percent.to_ s + "%)"
mean error = error / (26 % (total corrects + total incorrects)) - -
mean _error = (100 % mean error).round.to f / 100
puts "Mean error:\t\t\t" + mean_error.to_s
puts " "
infile = File.new("input/Numeric — OCR Original.res", "r")
margin_error = 0.02
total corrects = 0
total _incorrects = 0
data_start = false
data_line = 0
desired _output = —1
real_output = —1
error = 0
infile.each { |il]
# Begin data entry
if i[0,1] == "#" then
data start = true
data line = 0
desired _output = —1
real_output = —1
end
# Proce data entry
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100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

if data_start then
Build string with desired output
if data line == 3 then
desired output = i.to f
end - -

# Build strir with real output

if data line == 4 then
real_output = i.to_f
end
# End of data entry => Check if it is correctly classfied
if data_line == 4 then
if real output <= desired output + margin_error and real output >= desired output — margin_error then
total corrects = total corrects + 1 - - -
else - -
total incorrects = total incorrects + 1
end - -
error = error + (real_output — desired_output).abs
data_start = false
end
data line = data line + 1
end - -
}
puts " "
puts "s Network with numeric representation of letters P
puts " "
correct _percent = 100 % total_corrects.to_f / (total_corrects + total_incorrects)
correct_percent = (100 % correct_percent).round.to_f / 100
puts "Correct classifications:\t" + total_corrects.to_s + " (" + correct_percent.to_s + "%)"
incorrect _percent = 100 = total_incorrects.to_f / (total_corrects + total_incorrects)
incorrect _percent = (100 = incorrect_percent).round.to_f / 100
puts "Incorrect classifications:\t" J total incorrects.to s + " (" + incorrect percent.to_ s + "%)"
mean error = error / (total corrects + total incorrects) - -
mean error = (100 % mean_ error).round.to_ f / 100
puts "Mean error:\t\t\t" 4 mean error.to s
puts " - - "
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